
MASTERING LINUX

apcmag.com november 2005 mastering linux part 121

MASTERING LINUX

apcmag.com november 2005 mastering linux part 12 2

system administration

In this series . . .

Part 11 — October ‘05

Scripting and

customisation

Part 12 — November ‘05
System administration

Part 13 — December ‘05

Filesystems and

interactive scripts

. . . and more

Mastering Linux, part 12

USER SWITCHING
A point that is constantly emphasised in this series is

that you should avoid logging in as the root user

wherever possible. If you’re already logged in as a

non-root user at the console, you can quickly bring

up a temporary sub-shell by using the su (substitute

user) command.

When used with no arguments, su will prompt

you for the root password. If you can supply the

correct password, the shell will behave exactly as it

would if you were logged in as root — even down to

the # as your prompt instead of a $.

Once you’ve finished entering commands as the

root user, use exit to take you back to the shell that

you started in.

Alternatively, if you only have to execute a single

command as another user, consider using sudo.

However, some setup is required in order to use this

command effectively (mainly in relation to

configuration of the /etc/sudoers file). The man page

for sudo is easy to follow and will guide you through

the process of how to use the command.

WHAT’S RUNNING?
On a Windows system, you can load up Task Manager

to see what processes are running on your system.

Under Linux, the ps (Process Status) command is used

to provide a snapshot of the processes running at the

current time. Executing the command with no

arguments will return a list of all processes that have

started from your current session.

This command shows some valuable

information. For starters, the PID (Process Identifier)

is required to kill or re-prioritise a process. TTY

(Terminal Identifier) shows which system terminal

the process was executed from. The TIME column

displays the amount of processor time that has been

assigned to the process. Lastly, the CMD (command)

column displays the command entered to

commence the process.

Like most commands, arguments can be used to

alter the behaviour of the ps command. The table

below shows the most frequently-used arguments.

Argument Description

-e List all processes, including
processes that weren’t launched
from a terminal.

-f Provide a full listing of information
about the process including the
parent PID, start time and process
owner.

-u user List the processes that are owned by
user.

-g group List the processes that are owned by
users who belong to a group.

a List all processes, excluding the ones
that were not launched from a
terminal.

RE-PRIORITISE!
Unix was one of the first true multi-tasking

operating systems. One resource that must be

shared is the CPU. Each and every process needs

to use the CPU for short amounts of time in order

to get work done.

Some applications need more CPU resources

than others. For instance, if a process is performing

real-time encoding of video on your Linux system,

it requires enough CPU time to encode each frame

of video, otherwise frames will be dropped. Due

to the time-sensitive requirements of this

application, you could give it a higher priority than

a spreadsheet process.

Every process in Linux is given a nice value

— a politically correct name for priority between

-20 (the highest priority) and +19 (the lowest

priority). However, it makes little sense to assign

a value of -20 to all tasks — this won’t magically

make all tasks run any faster since all processes still

have the same priority.

The top command can be used to show what

processes are using the most system resources at

any given time. You can also change how nice a

process is by using the renice command as follows:

renice new_value PID

where new_value refers to the new nice value that

you want to assign to the process and PID is the

process identifier of the process you want to adjust

Jarrod Spiga explains that the ability to properly administer a Linux

system from the command line is a handy skill to have, even if you

aren’t a systems administrator.

Skill level
Intermediate

Requirements
An installation of Linux
(Fedora Core 4 and Red Hat
Enterprise Linux ES3 were
used in the writing of this
article).

Time to complete
3 hours

Bonus DVD software

PDFs of every instalment of
the Mastering Linux series.

The top command continually refreshes, showing you
the process consuming the most resources.

MASTERING LINUX

apcmag.com november 2005 mastering linux part 121

MASTERING LINUX

apcmag.com november 2005 mastering linux part 12 2

system administration

(you can get both the current nice value and

the PID ps -from the previously mentioned

top command).

THE PROCESS OF KILLING
You may occasionally need to kill a process

— to forcibly stop it from continuing to

execute. For instance, if one process is stuck in

a loop or has crashed, you’d generally want to

kill it off using the following command:

kill PID

where PID is the process identifier of the

process you want to terminate. When used

with no argument, as shown above, the shell

will send a kill signal to the process,

requesting that it closes any files the process

has open and then terminates. This is the

equivalent of hitting the End Task button in

Windows Task Manager if an application is

still responding.

But if an application has completely

crashed, the default kill may not always work

— you’ll need to send the process a more

destructive signal. Adding the -9 argument

after the kill command will forcefully stop the

process before it even has the chance to close

any files or pipes that it’s currently working

on. This argument should only be used when

the more graceful kill doesn’t work.

Another argument to the kill command is

the -HUP (hang up) argument. Many server

processes (such as the Apache Web server)

understand this argument and interpret it as a

request to reload the configuration files and

restart itself. However, not all processes

interpret this argument in this manner, and

many will simply terminate as if you hadn’t

passed the argument at all.

STARTING AND STOPPING SERVICES
When you boot up to Linux, a number of

system services automatically start. For

instance, the network service allows your

system to communicate over the network,

and X provides the framework for starting

X-Windows. The table below lists some other

services frequently found on a Linux system:

Service Name Purpose

httpd Apache
Web
server

The most popular
Web server on Linux
and Unix systems.

sendmail Sendmail
SMTP
server

An SMTP (email)
server.

smb Samba A Windows File and
Print Sharing server.

sshd Secure
shell

A secure shell
protocol server.

telnet Telnet Another shell
protocol server,
although much less
secure than SSH.

named The BIND
DNS
server

A DNS server.

You can control whether a service is running

or not with the service command located in the

/sbin directory. For instance, to start the

Apache Web server (assuming that you have it

installed), enter:

sbin/service httpd start

And as you’d expect, replacing start with stop

will stop the service. Most commands that are

present in the /sbin directory will require root

permissions to run.

RUN LEVELS
The chkconfig command, also located in the /

sbin directory, is used to display and modify

the run level statuses where system services

are started. A run level can be thought of as a

state at which your Linux system is currently

running in. There are seven run levels, as

described in the table below:

Level Description

0 System Halt. The system has either
shut down, or is in the process of
shutting down.

1 Single-user. A single virtual console
is running a single command line at
the console. This is generally used
when recovering from hardware
failures — akin to the recovery
console in Windows.

2 Multi-user, file services only. This
run level is used to start most
non-networking-based services on
a system. Multiple users can have
access to the file system from the
local console.

3 Multi-user, all services. The
common run level used when a
system is not running X-Windows
(i.e., when only the command line
is used at the console). Full
network and file system
functionality is present.

4 User-defined.

5 Multi-user, all services with X-
Windows. This run level is active
when your system is booted and
you’re logged in the X-Windows
environment. Full network and file
system functionality is present.

6 Reboot. The system is in the process
of being rebooted.

To view a list of which services run at

which run levels, execute:

sbin/chkconfig --list

The vncserver service is only operational at run

levels 4 and 5. This means that the service will

generally only run when X-Windows is

running. If you booted to a command line

and didn’t start X-Windows, this service

wouldn’t run.

To change whether a service runs when

the system is at a particular run level, use:

sbin/chkconfig --level <level numbers>
<service> [on|off]

where <level numbers> is a list of the run level

numbers that you wish to modify and <service>

is the name of the service that you’re

modifying.

For example, if you use your Linux PC

predominantly for Web development and run

X-Windows while using your development

apps, the Apache Web server (with service

name of httpd) should be running. However,

in order to preserve resources on your system,

you don’t want httpd to run when X-Windows

isn’t running. The below commands would

ensure this:

sbin/chkconfig --level 01236 httpd off

/sbin/chkconfig --level 5 httpd onNo time for games: using the renice command to forcibly kill Tux Racer.

MASTERING LINUX

apcmag.com november 2005 mastering linux part 123

MASTERING LINUX

apcmag.com november 2005 mastering linux part 12 4

system administrationsystem administration

You can confirm this by running:

/sbin/chkconfig --list | grep httpd

ACCOUNT MANAGEMENT
If you’re running a multi-user Linux system,

the ability to manage user accounts and

groups is critically important. The concept

of Users and Groups was covered in an

earlier instalment of this series (APC February,

page 103) when filesystem permissions

were explained.

Adding a user account is normally a

two-step task that needs to be performed as

the root user. The useradd command adds the

account, while passwd assigns a password to

the account. To create an account with your

username and to assign that account a

password, run:

usr/sbin/useradd yourname

passwd yourname

After you’ve run the first command, a home

directory should have been created for the

user under the /home directory. Other default

settings are also applied to the account, such

as the default shell that you will be greeted

with after logging on.

If you also inspect the contents of the

/etc/passwd file, you’ll be able to see a list of

all the accounts set up on your system as well

as a unique user identifier for each account.

To remove an account, use the userdel

command like so:

usr/sbin/userdel jspiga

But take care when removing accounts —

those with a user identifier lower than 500 are

usually special accounts which have been set

up to manage services. Some services may no

longer behave as intended if you remove one

of these accounts.

GROUP MANAGEMENT
Looking after individual users is only half of

the task, since groups need administering too.

As you’d expect, the groupadd and groupdel

commands can be used in the same fashion as

shown above to create and remove groups on

your system.

A group is a collection of individual users

with some common aspect. In order to be

effective from a permissions context, you

need to be able to manage group

memberships. To add a user to a group, enter:

/usr/bin/gpasswd -a user group

where user is the user you’re adding to the

group named group. Using the gpasswd

command with the -d switch will remove the

specified user from the specified group.

Administrators can’t be everywhere at

once, and it’s often useful to delegate the

responsibility of managing certain groups to

other users.

To delegate control of a group, use the

-A (note the capital A) switch with the

gpasswd command shown above.

SCHEDULING TASKS
The cron service within Linux is used to

manage scheduled tasks.

There are two types of scheduled tasks:

system-wide tasks including backups, system

monitoring and log rotation; and user-

defined tasks.

The cron daemon’s task is to execute

shell scripts that perform defined tasks at

given times.

System-wide cron jobs are usually called

from one of the cron directories under /etc.

Generally, only the root user has the access

to copy shell scripts to cron directories.

The following table summarises when

these system-wide jobs are run:

Directory Execution frequency

/etc/
cron.hourly

Shell scripts placed in this
directory are executed at
one minute past every hour.

/etc/cron.daily Shell scripts placed in this
directory are executed at
04:02 every day.

/etc/
cron.weekly

Shell scripts placed in this
directory are executed on
Sundays at 04:22.

/etc/
cron.monthly

Shell scripts placed in this
directory are executed at
04:42 on the first day of
every month.

If your system happens to be switched off

when cron is meant to execute something, the

anacron service will identify which tasks were

skipped and then execute them. This ensures

that maintenance tasks are run on your

system, even if you occasionally shut it down.

Individual users can also add scheduled

tasks by running:

crontab -e

When this command is executed, a vi editor

will appear, allowing you to define your task.

Each task should appear on its own line, using

the following convention:

min hour date month day command

The following table summarises what these

fields should be:

Field Description

min The minute (0-60) at which
the command should
be executed.

hour The hour (0-24) at which the
command should be executed.

date The date (1-31) at which the
command should be executed.

month The month (1-12) at which the
command should be executed.

day The day of the week (0 =
Sunday, 1 Monday and so
forth until 7 = Sunday) at
which the command should be
executed.

command The command that is to be
executed at the times defined
by the above fields.

You can also use special characters within

any of the non-command related fields to

allow more flexible execution times. For

instance, using an asterisk in the hour field

will execute the command every hour in line

with the other time-based fields. Multiple

values can be listed separated by commas,

while a range of values can be separated by

hyphens. Lastly, the forward-slash can be

used as a divider. Take the following cron

entry, for example:

*/5 9-13,14-18 * * 1-5 fetchmail

This line will execute fetchmail (which

downloads email from a POP3 server) every

five minutes, but only during working hours

— specifically between 9am and 1pm, 2pm

and 6pm on any date of the month and in any

month as long as the day is a weekday. The

tasks will not be run on weekends, lunch

breaks, or days off.

Once you’ve finished adding or editing

your cron entries, always be sure to save

your changes (:s!) and then exit from the vi

editor (:q).

Next month . . .

The next instalment of Mastering Linux
will cover file system management. It
will then head back into X-Windows to
show how to extend shell scripts so
you can interact with them while
they’re running.

